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SECTION I

INTRODUCTION

Advanced filamentary composites are finding increasing
applications in more critical aircraft components such as
fuselage, wing, control surface panels and engine fan blade
and containment structures. While composites offer significant
potential strength and weight advantages, it is necessarv that
thev also meet current Air Force design criteria of damage
tolerance. In order to employ these composites in design with
more confidence it is necessarv to evaluate their tolerance to

flaws and stress concentrations.

The problem of stress distribution around a cutout in a
composite plate has been treated analvtically using linear
anisotropic elasticity (References 1,2) and finite element
methods (References 3-8). The latter can be used to account
for material inhomogeneitv, nonlinearitv, and inelasticity.

Related analytical failure studies have been limited. Experimental
methods using strain gages, photoelastic coatings and moiré

grids have proven very useful in verifying theoretical solutions

in the linear range and complementing them in the nonlinear

range (References 9-14). Experimental methods are espveciallyv

useful in studying failure modes.

Most of the failure analyses of composites with stress
concentrations, such as holes or cracks, are based on the
assumption of linear material behavior and on failure criteria
carried over from isotropic materials. Greszczuk (Reference 15),
for example, used a form of the Hill criterion based on distortion
energv to determine the ultimate load and location of failure
on the hole boundary. Waddoups, Eisenmann and Kaminski

(Reference 16) analvzed failures in composite plates with holes
] p I
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using linear elastic fracture mechanics and assuming the existence
of two fictitious Griffith type cracks on the boundary of the

hole. No physical interpretation was given to these fictitious
cracks. Cruse (Reference 17) analvzed a similar problem by
modeling the circular hole with a straight crack having an equivalent
stress distribution near its tip. Recently, Whitney and Nuismer
(Reference 18) proposed simplified stress fracture criteria which
explain discontinuity size effects without applying linear

elastic fracture mechanics. They are based on the actual stress
distributions near the discontinuity and assume the existence of

a characteristic dimension. According to one criterion oroposed,
failure occurs when the average stress over this characteristic
dimension equals the unnotched tensile strength of the material.
Comparison with results from uniaxial tensile tests showed
satisfactory agreement between predicted and measured strengths for

a narrow range of values of the characteristic dimension.

Most of the analytical and experimental work above is
limited to uniaxially loaded laminates. Very little work has
been reported on the behavior of such laminates with stress
concentrations under biaxial states of stress. The inhomogeneity
of the material, the nonlinearity of response near failure and
the complex interaction of failure modes near notches make it
very difficult to predict biaxial behavior on the basis of
uniaxial response. An experimental approach dealing directly with
biaxial loading of composite plates with stress concentrations

is therefore very important.

The objective of this investigation was to study experi-
mentally the deformation and failure under biaxial tensile loading
of graphite/epoxy plates containing circular holes and cracks of
various sizes and to determine the influence of notch size on

failure. This study was limited to a quasi-isotropic laminate.




The program consisted of testing uniaxial unnotched and notched
specimens and biaxial notched specimens. The approach used was
to measure deformations by means of experimental strain analysis
techniques, determine strain concentrations, strain distributions
failure modes and strength reduction ratios. Whenever possible
results are compared with analytical predictions.

iy .




SECTION TII
MATERIAL QUALIFICATION AND CHARACTERIZATION
1. MATERIAL QUALIFICATION

The graphite/epoxy svstem selected was the SP-286T300
manufactured by the 3M Company. It is made of Thornel 300
fibers impregnated with SP-286 resin. A quantity of 50 1b
of 12 in. wide and 0.005 in. thick prepreg tape was procured.

The graphite/epoxy material received was qualified by
determining its flexural and interlaminar shear strengths from
unidirectional coupons. The prepreg material was cured

according to the following curing cycle:
1) 1Insert bagged layup into cold autoclave and
apply full vacuum.
2) Pressurize autoclave to 690 kPa (100 psi).

3) Raise temperature at 2.8 degK (5°F) per minute
to 393 degK (250°F).

4) Release vacuum.

5) Raise temperature at 2.8 degK (5°F) per minute
to 448 degK (350°F) and hold for 2 hours.

6) Allow to cool to room temperature.

7) Postcure at 478 degK (400°F) for 6 hours in

air circulating oven.

A 15.2 em x 15.2 em (6 in. X 6 in.) unidirectional plate,
15-plies thick, was fabricated for qualification testing.
Flexural strength coupons were 10.2 cm (4 in.) long, 1.3 cm
(0.5 in.) wide with a 6.3 cm (2.5 in.) span length. Interlaminar




shear strength coupons were 1.5 cm (0.6 in.) long, 0.6 cm (0.25 in.)

wide with a 1l em (0.4 in.) span length. ‘I'hese specimens were

subjected to three-point bending. Results of these qualification

tests are tabulated below:

TABLE 1T

QUALIFICATION FLEXURE TESTS FOR GRAPHITE/EPOXY SP-286T309

Specimen Thickness Vidth Flexural Strength
Number cm (in.) cm (im.) MPa (ksi)

1 0.188 (0.074) 1.265 (0.498) 1660 (241)

2 0.196 (0.077) 1.262 (0.497) 1730 (251 )

3 0.196 (0.077) 1.265 (0.497) 1735 ((251%)

4 0.193 (0.076) 1,270 (0500 L7255 (254)

5 0.190 (0.075) 1.262 (0.497) 1695 (245)

6 0.196 (0.077) 1.260 (0.596) 1700 (246)

Average: 1710

TABLE LY

(248)

QUALIFICATION INTERLAMINAR SHFEAP TESTS FOR GRAPHITE/EPOXY SP-286T300

comparable material SP-286T2.

Specimen Thickness Width Shear Strength
Number cm (in.) cm (in.) MPa (ksi)
1 0.193 (0.076) 0.625 (0.246) 88.6 (12.8)
2 0. 193 (0. 976) 0.620 (0.244) S -9 (L2 T)
3 0.193 (0.076) 0.630 (0.248) 9.2 (L3.2)
4 0.193 (0.076) 0.627 (0.247) 92..3 (13.4)
5 0.193 (0.076) 02622 (0.245) 9.2 ¢3S . 2)
6 0.191 (0.075) 0.615 (0.242) 89.8 (13.0)
Average: 90.1 (13.1)
The results above were judged satisfactory since they
exceed the highest data available from the manufacturer for the




2. CHARACTERIZATION OF UNIDIRECTIONAL MATERIAL

Unidirectional tensile properties were obtained by testing
2.54 cm x 22.9 cm (1 in. x 9 in.) 8-ply coupons. Four specimens
of each were tested. Typical stress-strain curves as well as
modulus, Poisson's ratio and strength obtained from these tests
are shown in Figures 1-4. Strains in the 0O-deg. direction are
linear to failure. Axial strains in the 90-deg. specimens are
linear up to a stress of apprcximatelv 21 MPa (3 ksi) corresponding

to a strain of 0.002, thereafter they increase at a faster rate.

Compressive proverties were obtained using the TIITRI-
designed compression test fixture which represents an improved
modification of the Celanese fixture. The IITRI fixture uses
trapezoidal wedges as opposed to the conical grips of the Celanese
fixture. The trapezoidal wedges permit surface-to-surface contact
at all positions and apply lateral compression to the specimen
tabs to prevent slippage. The longitudinal coupons were 13.5 cm x
0.64 et (5.3 dm. x 0.25 in.) and 15-plies thick (1.93 mm: 0.076 in.)
with a gage length of 9.5 mm (0.375 in.). The transverse coupons
were l6-plies thick and had a gage length of 6.4 mm (1/4 in.).

The gage sections of these specimens were instrumented with axial
gages on both sides, primarily to monitor strains during loading
and confirm the axiality of compressive loading up to failure.
Stress-strain curves to failure for the unidirectional compressive
specimens are shown in Figures 5-8. Also shown in these figures

are the modulus and strength obtained from these data. Both 0-deg.
and 90-deg. specimens show nonlinear strain behavior not associated
with buckling. The 0-deg. specimens show a modulus somewhat

lower than that obtained from corresponding tensile specimens but
this difference is not regarded as significant and may be due to the
early nonlinear behavior of the material. Their compressive
strength is appreciably lower than the 0O-deg. tensile strength.

The modulus for the 90-deg. specimens is the same as for the 90-deg.
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tensile specimens. The compressive strength is more than four

times the tensile strength as is always the case.

In-plane shear properties were determined bv two different
methods, by testing 10-deg. off-axis unidirectional specimens
and [145]25 uniaxial specimens. In the first method the specimens
werel.27 cm (0.5 in.) wide, 6-ply thick and 25.4 em (10 in.)
long. They were instrumented with a three-gage strain gage rosette
on each side. Shear stress and shear strain computed from the
measured data are plotted in Figures 9 and 10. The in-plane shear
modulus and shear strength obtained from the data are also shown
in the figures. 1In the second method two [i&S]zs eight-plv coupons
were prepared, instrumented with two-gage rosettes on each side
and loaded to failure under uniaxial tension. The in-plane shear
stress and shear strain were computed from the axial stress and

the measured axial and transverse strains as follows:

" c XX
§2 2
= ¢ - ¢
Y42 XX vy
where © = axial stress
XX
£ E = axial and transverse strains, respectively

XX ¥y

Shear stress versus shear strain are plotted in Figures 11 and 12
for the two specimens. The average values of the modulus and shear

strength obtained are:

6.1 GPa (0.89 x 10° psi)

L

et
512 = 72 MPa (10.5 ksi)
The value for the modulus is somewhat lower than that obtained from

unidirectional 10-degree off-axis tests and the shear strength is

appreciably higher than the value obtained in those tests.
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Results from the characterization tests above are tabulated
in Table III. All values are higher than the manufacturer's data
for the comparable material SP-286T2.

20

- . 3 & Lo’ o




TABLE ITI

PROPERTIES OF UNIDIRECTIONAL GRAPHITE/EPOXY

SP-286T300

Property

Value

Ply Thickness
Longitudinal Modulus, E11
Transverse Modulus, E22
Shear Modulus, G12

Major Poisson's Ratio, vq,

&

Minor Poisson's Ratio, Vo1

Longitudinal Tensile Strength, SllT

Ultimate Longitudinal Tensile
Strain, C%IT

Longitudinal Compressive
Strength, S11C

Ultimate Longitudinal Compressive
Strain, (Tlc

Transverse Tensile Strength, S9?T

Ultimate Transverse Tensile
Strain, E§2T

Transverse Compressive Strength,
S22¢

Ultimate Transverse Compressive
Strain, “gZC

In-plane Shear Strength, S12

Ultimate Shear Strain, rgz

0.130 mm (0.0051 in.)

149 CPa (21.6 x 10° psi)
10.6 GPa (1.53 x 10° psi)
6.4 GPa (0.93 x 10% psi)
0.31

0.014
1477 MPa (214 ksi)

0.00972
1132 MPa (164 ksi)

0.01040
54 MPa (7.8 ksi)

0.00541
211 MPa (30.6 ksi)

0.02565
72 MPa (10.5 ksi)
0.0110
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SECTION III
UNIAXTIAL TESTS OF UNNOTCHED LAMINATE

Basic properties were determined of the quasi-isotropic
[O/tl+5/90]S laminate used in subsequent tests with notched
specimens. Uniaxial tensile properties were determined in the
0-deg. and 90-deg. directions with respect to the outer fibers.
The specimens were standard 2.54 cm x 22.9 cm (1 in. x 9 in.)
coupons instrumented with two-gage rosettes on each side.
Stress-strain curves to failure are shown in Figures 13-16. The
strain response is linear up to approximately 240 MPa (35 ksi)
corresponding to an axial strain of approiimatelv 4 x 1()-3
This is a little higher than the strain at which the response of
the 90-degree unidirectional specimens becomes nonlinear
(Figures 3 and 4). Although the number of snecimens tested is
very small, the influence of stacking sequence is apparent. The
strength of the [90/+45/0]
than that of the [O/t45/9O]S spec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>